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“Everything is related to everything else, but near things are more related than

distant things.” Tobler (1970)

1. INTRODUCTION

The quote above is also known as the first law of geography and points to the empirical

fact that socio-economic phenomena, such as poverty, GDP and unemployment, often

display spatially correlated patterns—or, in other words, are clustered in space. For example,

people in Amsterdam who live at the three largest canals (Herengracht, Keizersgracht and

Prinsengracht) are usually richer than people who live in the western part of Amsterdam.

And most countries in sub-sahara Africa are performing economically worse than most

countries in Western Europa. Such examples of spatially related phenomena can be found

for almost every spatial detail, agent, and phenomenon.

Of course, most spatial patterns, such as the spatial distribution of wealth, are the result of

historical processes, but if you think about it, the concept of spatial relationships is actually

rather common in everyday life. For example, most would-be students choose an university

close to home, most workers search locally for a new job in the labour market, and you

usually catch a new disease (like the flu) at work or school.

Thus, (cor)relations over space are rather common. Still, mainstream economics does not

regard space as something that truly matters. This perception led to the criticism of one of

the founders of regional science, Walter Isard, that there was an “Anglo-Saxon bias” which

repudiates the factor of space and compresses everything within the economy to a point,

so that all spatial resistance disappears. Maintaining this confines economic theory to “a

wonderland of no spatial dimensions.”

1



THE CHARACTERISTICS OF SPACE THOMAS DE GRAAFF

In the last three decades, however, there seems to be a renewed interest in the concept

of space and methods to account for space properly—not in the last place because of

the increasing availability of large spatial databases derived from remote sensing, satellite

data and mobile devices Another cause is the ‘death of distance’ debate (see the work

of Cairncross, 1997; Friedman, 2005), where it was argued that due to the emergence of

information and communication technology the role of distance in trade and labor and

housing markets would diminished severely. Maybe surprisingly, we have actually seen the

opposite in the last two decades; clustering of most economic activity has only become

stronger in recent decades (and especially the most important of all—the growth of cities).

The role of distance indeed seems to have become stronger (and we do not really understand

at the fundamental level why, although we have many theories—see as well the very readable

and comprehensive overview of Proost and Thisse (2019)).

Partly, the renewed scientific theoretical interest in space may be traced back to the

introduction of the monopolistic competition model by Dixit and Stiglitz (1977) and the

resulting emergence of the ‘new economic geography’ by Paul Krugman (see, e.g., Fujita

et al., 1999). The renewed empirical interest in spatial methods in econometrics started

more or less with the seminal contribution of Anselin (1988) and seems to be finding its

way to mainstream econometrics in the last 20 years (see, e.g., Baltagi et al., 2003; Kelejian

and Prucha, 1998; Kelejian and Prucha, 2004).1 Most interest nowadays is (i) on the focus of

combining time-series data with spatial data (see, e.g. Elhorst, 2001; Baltagi et al., 2003), as a

more complex form of panel data methods and (ii) on estimating larger spatial systems—the

big data phenomenom (see for a good introduction to the problem LeSage and Pace, 2009).

The toolbox that deals with spatial patterns and processes is now commonly referred

to as spatial econometrics, a term coined by the Belgian professor Jean Paelinck in the

1970s. Although most concepts seem at first quite similar to time-series econometrics,

there are some fundamental differences. This syllabus continues first to explain the most

fundamental differences between spatial and time-series econometrics, where we explicitly

look at potential dependence structures. We continue with looking directly in possibilities

to model space explicitly in a regression framework. Thereafter, we spend some attention

on why it actually is important to correct for spatial relationships and, subsequently, we give

some possibilities to test for the spatial dependence and the validity of the various spatial

models given before. We end this syllabus with an empirical application, where we apply

the various techniques to the determinants of crime levels in the city of Columbus, Ohio.

2. THE CHARACTERISTICS OF SPACE

2.1. WHAT IS THE PROBLEM?

Figure 2.1 gives the percentage of the adult population that is obese across the United States.

When observing Figure 2.1 one may infer two observations:

1Actually, before 1988 there were already quite some good volumes and articles on spatial statistics, including

the seminal work of Cliff and Ord (1981) who introduced the concept of spatial autocorrelation. However,

they were only used in geography or in a small research niche in the field of regional science.
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Figure 2.1: Obesity prevalence across the United States

1. The obesity prevalence in the United States is unequal across states, ranging from

19.1% to 33.8%. This phenomenon is called spatial heterogeneity; socio-economic

variables are unequally distributed over space.

2. The obesity prevalence seems to be clustered over space, being the least in New-

England and the west coast and the most in the southern states. This phenomenon is

called spatial dependence (we will give a formal definition below).

Spatial heterogeneity and spatial dependence are very much related and difficult to discern

from each other. For that we need specifically tailored statistical tests.

Most mainstream economics models do not take spatial heterogeneity or spatial depen-

dence into account and are therefore called “topologically invariant”—that is, the phe-

nomenon that is studied exhibit constant characteristics over space. There is one exception

to this, and that is the nowadays common practice to incorporate spatial fixed effects for

countries, regions and zipcodes. Note that this will tackle spatial heterogeneity as far as the

levels are concerned (only the constants will then vary over space), but not deal with spatial

dependence.

2.2. MODELLING SPATIAL RELATIONS

So, we know there are spatial effects, whether it is spatial dependence or spatial hetero-

geneity, but then what? How can we incorporate a spatial system within an econometric or

statistical framework?

Let us start with a country with four regions, named A, B , C , and D. Then all possible

relations between those four regions can be depicted as in diagram (2.1).
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If we compare diagram (2.1) with a time-series of four observations, such as in the following

diagram:

Yt−3
//Yt−2

//Yt−1
//Yt (2.2)

then it becomes clear that there are two main differences between the spatial and the

temporal case, namely:

1. Spatial relations are multi-directional. One spatial unit, say a region, can affect several

other spatial units directly.

2. Spatial relations are reciprocal. Spatial unit A affects B and B affects A at the same

time.

Of course, one might argue that there is always a temporal dimension (just as there is always

a spatial dimension), but for reasons of simplicitly we refrain from that possibility and

assume that a spatial relation occurs instantaneously (again, for space-time models see, e.g,

Elhorst, 2001).

But how to measure such a spatial relationship? Consider the map of GDP growth across

the world (data are obtained from the Mankiw et al., 1992)) in Figure 2.2. Each country can

be connected to another with some kind of function. The two most used functions in the

literature are:

1. Contiguity based. For so-called first-order contiguity based relations, two areas have

a relation if and only if they share a common border. Otherwise the relation is zero.

In this respect, relations between direct adjacent neighbours are called first order

contiguity, between areas that share a common neighbour second order contiguity,

and so on. If regions or countries are isolated (e.g., with islands) this might pose a

problem.

2. Distance based. Here the relation between two areas is measured by some notion of

distance of travel time. A commonly used metric is the inverse of the distance between

the two areas, such as 1/d . Sometimes a more general power function is used, such as

d−α, to capture a non-linear relationship. If one feels that a relationship only extends

over a certain distance, say x kilometres, then one can also use a cut-off function,

indicating that the relationship is proportional to 1/d within x kilometres, and 0 after

x kilometres.
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Figure 2.2: GDP growth across countries

We would like to stipulate here that, alhough often used, distance does not have to be based

on a Euclid distance metric. It is just as valid to base your distance measure on, e.g., social

or information networks. That is, the distance can be expressed like that. Note, however,

that geographically based distances, such as kilometers, can truly be regarded as exogenous,

while metrics based on social interactions are usually correlated with the phenomenon

to be explained. The latter introduces then another kind of endogeneity, which further

complicates matters when applying this in a regression framework.

So, we have some kind of function that describes how units, such as areas, regions, coun-

tries and humans, relate to each other in space, but how can we depict such a relationship

for the whole spatial system? Consider again a country with four regions, named A, B , C ,

and D , where the relationships between the regions are as depicted in diagram (2.3)

A

��

//B

��

oo

C //

??OO

Doo

(2.3)
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Now, the way to go forward is to use the information from diagram (2.3) and display this in

a so-called spatial weight matrix, usually denoted as W.2 If we use a first-order contiguity

spatial weight matrix, then (where rows denote always the origin and the columns the

destination; so, the 1 in the first row and the second column denotes from A to B):

W =











0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0











. (2.4)

and if we use an inverse distance spatial weight matrix, where di j denotes some kind of

distance measure between spatial unit i and j (i , j ∈ {A,B ,C ,D}):

W =











0 1/dAB 1/dAC 1/dAD

1/dB A 0 1/dBC 1/dBD

1/dC A 1/dC B 0 1/dC D

1/dD A 1/dDB 1/dDC 0











. (2.5)

Three things become immediately clear when looking at the two types of spatial weight

matrices. First, they are symmetric, reflecting the reciprocal nature of spatial relationships.

Asymmetric spatial weight matrices are sometimes used as well, but make things consid-

erably more complex. Secondly, the diagonal is always zero. Thus, a spatial unit does not

affect itself directly. Thirdly, first order-contiguity spatial weight matrices exhibit quite a lot

of zeros when spatial systems become larger, and are therefore also called sparse matrices.

This feature is attractive because is has some direct computational advantages (basically, it

is a lot faster to store such matrices in computer memory; see, e.g., LeSage and Pace, 2009).

Distance based weight matrices are usually full weight matrices (each entry except those on

the diagonal is non-zero).

For ease of computation and estimation spatial weight matrices are typically row-standardized.

This mean that all entries are divided by their respective row-sums, or for a typical four by

four matrix:

W =













0 a12
∑

j a1 j

a13
∑

j a1 j

a14
∑

j a1 j
a21

∑

j a2 j
0

a23
∑

j a2 j

a24
∑

j a2 j
a31

∑

j a3 j

a32
∑

j a3 j
0

a34
∑

j a3 j
a41

∑

j a4 j

a42
∑

j a4 j

a43
∑

j a4 j
0













. (2.6)

Note that with this procedure all entries on a role sum up to 1 and that spatial weight

matrices that initially were symmetrical loose their symmetry.

2Because of notational ease, spatial econometrics usually is done in matrix notation. For those not accus-

tomed to matrix notation and algebra, appendix A gives a quick recap.
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To give an example, consider again the countries in Figure 2.2. The darker the country code

areas the higher economic growth. But how to implement this in a statistical framework?

We proceed as follows. In this case, we measured the distance between each country as

the crow flies (why not take a first contiguity approach here?), giving us the distance di j

between each country i and j . Using these distances, we construct a distance based spatial

weight matrix, W, where the entry for each row i and column j is formed by 1/di j . Note that

there about 97 countries in this dataset, thus we end up with a matrix W with size 97×97, or

9,409 entries in total. Now, we know for each country the growth of GDP per worker well,

denoted with the vector y , then a measure for GDP weighted by distance can be denoted as

ỹ = Wy, (2.7)

where the i -th element of ỹ gives an weighted average of GDP, where we weight by distance.

.

3. SPATIAL ECONOMETRIC MODELS

3.1. SPATIAL DEPENDENCE

The basic concept in spatial econometrics is spatial autocorrelation or spatial dependence.

Fundamentally, these two concepts are not the same, but usually they are treated similarly,

just as we do in this chapter. To proceed, first note that independence between two stochastic

variables can be formalized as follows:

Pr(Xi = xi ) = Pr(Xi = xi |X j = x j ), (3.1)

where i and j are two spatial units. Equality (3.1) basically states that the probability that

xi occurs in spatial unit i is not related with the probability that x j occurs in spatial unit

j . But what if spatial units i and j are related to each other, then equality (3.1) becomes

an inequality. If we now assume that there is a set of J neighbours around i that exert an

influence on i – via, e.g., a first order contiguity matrix –, then the whole system of spatial

dependence may be denoted as:

J |
{

Pr (Xi = xi ) 6= Pr(Xi = xi |X j = x j )
}

. (3.2)

So, what does equation (3.2) actually say? Loosely speaking, it says that the spatial system of

dependence around i consists of all neighbours j ∈ J that have a statistical relation with i .

In order words, i and j are not independent.

This shows that spatial dependence is basically a statistical concept, which does not say

anything about causality, but merely about (cor)relations. Thus, phenomena occurring in

spatial units i and j may be correlated because there is a fundamental process working or

because some important variables have been left out of the model that influence both the

phenomenon in spatial unit i as well as in spatial unit j . The latter we denote with the term

unobserved spatial heterogeneity.
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3.2. A BASIC TAXONOMY OF SPATIAL ECONOMETRIC MODELS

In a regression framework we may denote now the following general spatial model, using

the concept of the spatial weight matrix as explained above and in matrix form:

y = ρW1 y +W2Zγ+Xβ+ǫ

ǫ = λW3ǫ+µ, (3.3)

where y is a vector of endogenous variables, X is a matrix of exogenous variables, {ρ, γ,

β, λ} is a vector of parameters, and µ is a vector of i.i.d. distributed residuals (usually

assumed to be normally distributed). Note that the spatial weight matrices do not have to

be the same. W1, W2 and W3 may differ, but are usually equal to each other. To facilitate

estimation and testing in a regression framework, these weight matrices are almost always

row-standardized. So again, this means that every element in these matrices are divided by

the sum of all elements in their specific rows (wi j /
∑

i wi j ). Spatial processes work through

these spatial weight matrices and are measured by their corresponding parameters, ρ, γ

and λ. So, spatial dependence is captured in only a few parameters to be estimated, which

is rather efficient. Attempts have been made to estimate the whole spatial weight matrix

parametrically, but this does not seem to improve matters much.

Note that both Z and X are both two sets of exogenous variables, which may be identical

to each other (but not necessarily so). Moreover, if ρ = γ=λ= 0 model (3.3) simplifies to the

multivariate ordinary regression model:

y = Xβ+µ, (3.4)

Model (3.3) gives the general expression of the most simple form of modelling space in

a regression framework. This model can be decomposed in the following three separate

spatial models.

❚❤❡ s♣❛t✐❛❧ ❧❛❣ ♠♦❞❡❧ ✭ρ 6= 0✱ γ= 0✱ λ= 0) This leads – in matrix notation – to the fol-

lowing expression:

y = ρW1 y +Xβ+µ. (3.5)

Note that for each region r and all its possible neighbours r ′ yields: yr = ρ
∑

r ′ wr r ′ yr +
βxr +µr , which, for example, collapses with only two regions (r and r ′) and weights

wr r ′ set at 1 and 0 (for a contiguity matrix), to: yr = ρyr ′ +βxr +µr , which bears again

close resemblance to the time-series model with autocorrelation.

We can rewrite the spatial lag model (3.5) as: (I−ρW1)y = Xβ+µ, where I stands for

the identity matrix. Rewriting leaves us with: y = (I−ρW1)−1(Xβ+µ).3 Thus a change

in y causes a changes throughout the whole system, because some kind of feedback

system is introduced. To see this, consider the following mathematical equality:

(I−ρW1)−1 = I+ρW1 +ρ2W1W1 +ρ3W1W1W1 + . . . (3.6)

3The trick here is to multiply both sides with (I−ρW1)−1 and to remember that (I−ρW1)−1(I−ρW1) = I.
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which bears close resemble with the mathematical formulation of conventional input-

output models. Namely, when y changes this has an effect on itself (through the

identity matrix), if affects its neighbours (through the second term), those neighbours

affect their neighbours again (through the third term), and so forth. The nice thing

about this model is that it has an interesting theoretical interpretation. For example, it

can—at least theoretically—model the transfer of knowledge, the spread of disease, or

agglomeration effects.

❚❤❡ s♣❛t✐❛❧ ❝r♦ss✲r❡❣r❡ss✐✈❡ ♠♦❞❡❧ ✭ρ = 0✱ γ 6= 0✱ λ= 0✮ This leads to the following ex-

pression:

y = γW2Z+Xβ+µ. (3.7)

Note that now for a region r and say its neighbour r ′ yields: yr = zr ′γ+xrβ+µr when

the spatial weight connection between r and r ′ is set again at 1. Thus, some kind of

phenomenon, say regional growth, in r depends on some exogenous variables, say

the growth of human capital, in region r and in its neighbouring region r ′.

This model is econometrically the least interesting of the three. Essentially it is a

transformation on (a subset of) the exogenous variables (Z), and therefore reduces to

a basic regression framework. If you think a variable needs a spatial transformation,

then that transformation can be performed on that variable without transforming the

other variables or changing the model specification.

❚❤❡ s♣❛t✐❛❧ ✭❛✉t♦r❡❣r❡ss✐✈❡✮ ❡rr♦r ♠♦❞❡❧ ✭ρ = 0✱ γ= 0✱ λ 6= 0✮ This leads to the follow-

ing expression:

y = Xβ+ǫ

ǫ = λW3ǫ+µ. (3.8)

where for one region r and it neighbour r ′ the expression for the residual of r becomes:

ǫr =λǫr ′ +µr , with the weight between r and r ′ set at 1. This shows that the residual

is basically a random effect (µr ) in combination with a part of the residual in its

neighbouring region.

Now note that ǫ−λW3ǫ = µ, solving for ǫ leads to (I−λW3)ǫ = µ and thus ǫ = (I−
λW3)−1µ, which basically reduces the spatial error model to y = Xβ+ (I−λW3)−1µ.

This last expression clearly shows that in theory spatial dependence only shows up in

the obtained regression residuals through the same effect as in equation (3.6). The

spatial error model is theoretically therefore more difficult to interpret than the spatial

lag model.

Basically, the three models above are the ones most commonly used, but other models and

combinations of the above three exist as well, but for reasons of simplicity we will restrain

ourselves to these ones.
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3.3. DOES IT MATTER?

A question that naturally arises is whether it actually matters when spatial dependence is

present. Can we still apply OLS on those regression models? We answer this question in the

light of the three models above. For this purpose, we need the concepts of statistical bias

and efficiency. Recall that statistical bias refers to the fact that an estimator of a parameter

(θ̂) does not produce the correct true parameter (E(θ̂) 6= θ). And an efficient estimator θ̂

indicates that there is no estimator θ̂1 that has a variance smaller than the variance of θ̂.

For instance, not accounting for heteroskedasticity by not applying robust standard errors

usually lead to inefficient standard errors (but not to a biased estimator).

❚❤❡ s♣❛t✐❛❧ ❧❛❣ ♠♦❞❡❧ ✭y = ρ❲1 y +❳β+µ) When this is the true model, OLS is not only

inefficient, but it always produces biased results.4The reason for this may be clear.

There are endogenous variables on the right-hand side, which leads to E[µ|X ] 6= 0 or

biased results when simply applying OLS. Actually, this spatial bias can be proven

rather easily. Without loss of generality we may simplify the model to:

y = ρW1 y +µ. (3.9)

Now remember that the OLS estimate for ρ is:

ρ̂ = [(W1 y)′(W1 y)]−1(W1 y)′y. (3.10)

with ′ denoting the transpose of a matrix.5

Now substitute the expression for y from equation (3.9) into equation (3.10) and we

finally get:

ρ̂ = [(W1 y)′(W1 y)]−1(W1 y)′(ρW1 y +µ) (3.11)

= [(W1 y)′(W1 y)]−1[(W1 y)′(W1 y)]ρ+ [(W1 y)′(W1 y)]−1(W1 y)′µ) (3.12)

= ρ+ [(W1 y)′(W1 y)]−1(W1 y)′µ. (3.13)

The second term in (3.13) is usually not equal to zero (because µ is correlated with

y) and therefore OLS does not produce a consistent estimator of ρ (remember that

consistency means loosely that if the number of observations become very large, the

estimator convergences in probability to the parameter that is estimating). Including

the β coefficients in this proof is straightforward.

4Recall that bias indicates that the expected value of the difference between and estimator and the parameter

that is is estimating is non-zero. Or, if µ̂Y is an estimator of µY then the size of the bias is E(µ̂Y )−µY and

we say that the estimator is biased (Stock and Watson, 2015).
5Here W1 y is used instead of the normal matrix X. Inserting X for W1 y leaves us again with the familiar result:

(X′X)−1X′y .
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❚❤❡ s♣❛t✐❛❧ ❝r♦ss✲r❡❣r❡ss✐✈❡ ♠♦❞❡❧ ✭y = γ❲2❩+❳β+µ✮ Because the exogenous pa-

rameters are only (spatially) transformed, this model can still be consistently and

efficiently estimated by OLS.

❚❤❡ s♣❛t✐❛❧ ✭❛✉t♦r❡❣r❡ss✐✈❡✮ ❡rr♦r ♠♦❞❡❧ ✭y =❳β+ (I−λ❲3)−1µ✮ As seen above, this

model produces a spatial dependence structure in the residuals, indicating that the

residuals are not identically and independently distributed anymore. Fortunately,

this does not lead to biased results, but it does create inefficiency. Thus, there are

better estimation procedures than OLS out there that produce consistent and efficient

results. Note that OLS here gives inefficient results with sample sizes smaller than

infinitely (and how often does that happen). This means that when correcting for

autoregressive errors the standard errors might turn out to be rather different than the

standard errors coefficients resulting from an OLS regression (and with small samples

this might affect the β coefficients as well).

4. TESTING FOR SPATIAL EFFECTS

Before starting to estimate all kinds of specifications, the econometrician would like to

have some clue about which model specification would be more or less the correct one.

Fortunately, several test-statistics have been devised to test for the presence and type of

spatial dependence. In general there are two type of tests. Unfocused or general misspecifi-

cation tests, which test for the presence of spatial dependence in what ever form present.

And focused or specific misspecification tests that test for the presence of a specific type

of spatial dependence (i.e., spatial lag or spatial error dependence). In this section we will

only give a few of these tests, without going into the mathematical background of these tests.

The null-hypothesis is always no spatial dependence. In other words, the null model is the

ordinary regression model.

y = Xβ+µ (4.1)

We always assume that the econometrician has estimated the null model and kept the

realisations of the error term, the residuals, which we call u.

4.1. GENERAL TESTS FOR SPATIAL DEPENDENCE

Now, the oldest and most common general misspefication test is the so-called Moran’s I :

I =
R

S0
×

u′Wu

u′u
, (4.2)

where R is the number of spatial units, S0 is the sum of all elements of the spatial weight

matrix, and W and u are as specified before. Note that when the spatial weight matrix is

row-standardized all rows will sum up to 1 and S0 to R , thus the term R
S0

becomes equal to 1.

The advantage of this test-statistic is that is has power against all kinds of spatial dependence

processes. The disadvantage is that we do not know against which kind of spatial process.
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For those familiar with time-series, notice the close resemblence with the Durbin-Watson

statistic.6 Statistical inference can be based on the standardised or z-value of Moran’s I , as

follows:

zI =
I −E(I )
p
Var (I )

,

Unfortunately, the expectation and the variance have rather long technical expressions, but

can be derived analytically based on the assumption of a normal distribution (Anselin, 1988).

Fortunately, computer programs will do this now (one can resort as well to simulations).

Like Moran’s I , other general test statistics have been developed, such as Geary’s c and Getis

& Ord’s G . However, the latter two tests do now seem to perform as well as Moran’s I , and in

most applications nowadays only Moran’s I is reported.

4.2. FOCUSED TEST FOR SPATIAL DEPENDENCE

There are test as well that directly test for the presence of a spatial lag or spatial error model.

There are no tests for spatial cross-regressive models, mainly because they do not affect the

residuals, u, and are not considered as misspecifications. These focused tests are so-called

Lagrange Multiplier (LM) tests and are given here to complete the picture. Unfortunately,

these tests are somewhat complex but because every preprogrammed estimation procedure

gives these as output and every paper reports them, they are needed to get a good overview.

We start with the simplest, the LMλ-test for the presence of a spatial error component model,

which is basically a scaled Moran’s I test (see also Florax and Nijkamp, 2005).

LMλ =
1

T
×

(

u′Wu

s2

)2

(4.3)

where s2 is the maximum-likelihood variance u′u/R and where T is somewhat more compli-

cated. It is the trace of a quadatric expression of the weight matrix: T = tr(W′W+WW). The

trace is here a new matrix operation. It is essentially the sum of all the diagonal elements of

a matrix (tr(W) =
∑R

i=1 wi i ). Fortunately, this test statistics follows nicely a χ2 distribution

with one degree of freedom.

The LMρ has the same distribution and looks similar:

LMρ =
1

R J
×

(

u′Wy

s2

)2

(4.4)

where J has a rather ugly expression, namely: J = [(WXβ̂)′M(WXβ̂)+Ts2]/Rs2. Here β̂ are

the estimated OLS coefficients and M is the projection matrix I−X(X′X)−1X′. There is a lot

6This test statistic, d , measures whether temporal residuals are autocorrelated by

d =
∑T

t=2(ut −ut−1)2

∑T
t=1 e2

t

,

where a value of d that differs significantly from 2 suggests temporal autocorrelation.
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more to say about tests for spatial dependence and there are quite some more, but these are

the most common and the ones you’ll find reported in almost every table of results.

These tests have as disadvantage that they do not distinguish properly between spatial

error and spatial lag processes. Therefore, so-called robust LM tests have been constructed.

These tests are called robust because they account for the potential presence of a spatial lag

of spatial error model when testing for a spatial error or spatial lag model, respectively. The

test for a spatial error robust to the presence of a spatial lag model is as follows:

LM∗
λ =

1

T −T 2(R J )−1
×

(

u′Wu

s2
−T (R J )−1 u′Wy

s2

)2

, (4.5)

with all notation as above. This expression looks (and is) ugly, but if you look closer, you see

that there is some of subtraction present (equation (4.3) - equation (4.4) that accounts for

the local misspecifcation of a spatial lag process.

Alternatively, the test for spatial lag robust to the presence of a spatial error model is:

LM∗
ρ =

1

R J −T
×

(

u′Wy

s2
−

u′Wu

s2

)2

. (4.6)

Both tests follow nicely a χ2 distribution with one degree of freedom. Most common practice

is to choose and estimate that model, which robust test-statistic is (most) significant. Usually

only one test-statistic is significant. If none of these test-statistics are significant, there is no

misspecification in our basic regression model (4.1) and we may confidently apply OLS. If

both robust test statistics are significant, one can nowadays use the generalised spatial 2SLS

estimator of Kelejian and Prucha (1998) and Kelejian and Prucha (2004).

4.3. LOCAL MORAN AND MORAN SCATTERPLOTS

Although the test statistics above seem to perform fairly well in detecting spatial dependence,

they are not particularly suitable in detecting outliers or localised clusters of spatial depen-

dence (hotspots). Therefore, so-called local indicators of spatial association (LISA) have

been developed in the 1990s. They are basically a graphical tool to detect spatial dependence

and help in identifying the correct spatial pattern. Here, we will only discuss the local Moran

statistic and the Moran scatterplot, which are the ones most commonly used.

For a standardized weight matrix, the local Moran for spatial unit r is given by:

Ir =
(xr − x̄)

∑R
r=1 wr r ′(xr ′ − x̄)

∑R
r=1(xr − x̄)2/R

, (4.7)

where R is again the total number of spatial units and the x̄ denote the average of x, and x

may stand for every vector of variable of interest, including the residuals. Calculating the

test-statistic (4.7) for every spatial unit, gives a vector of indicators for spatial dependence.

In this way, outliers can be quite easily identified. Note that
∑

r Ir gives again our global

Moran’s I .

Looking more closely to (4.7) reveals another pattern. Namely, it is not difficult to see that

we can transform xr to zr by:
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zr =
xr − x̄

√

∑R
r=1(xr − x̄)2/R

=
xr −E(x)
p
Var (x)

,

which is the standardized version of x. Now, (4.7) can also be rewritten as Ir = zr
∑R

r=1 wr r ′zr ′ .

In other words, depicting z against Wz in a scatterplot, is another way of presenting the

information behind (4.7). Moreover, the slope of the regression through the scatterplot

gives then the aggregate Moran’s I again! The reasoning behind this is that the Moran’s I

can be interpreted as the correlation between a phenomenon z and the occurrence of that

phenomenon in neigbouring regions.

Because z is standardized, this slope of the regression runs always through the ori-

gin (remember: standardization means correction for the expectation, resulting in de-

viations around zero) and divides the scatterplot in four quadrants: namely positive-positive,

positive-negative, negative-negative, and negative-position (for those of you who want a

visual example, Figure 6.2 gives such a scatterplot. If there is positive spatial dependence

then most observations will lie in the positive-positive and negative-negative quadrants.

This basically means that values of z are closely correlated with values of z in neighbouring

regions. Negative spatial dependence will cause most observations to be located in the

negative-positive and the positve-negative quadrant.

5. ESTIMATION OF SPATIAL MODELS

Thus, for the spatial lag (and to a lesser extent for the spatial error) OLS is not feasible

anymore. Which alternatives are there? The two mostly used estimation strategies are:

1. A maximum likelihood approach. This basically implies that the researcher should as-

sume a stochastic distribution for the error term (typically normal) and then searches

for that parameter combination that fits the data best. Besides complex and com-

putationally intensive, the biggest drawback is that one has to assume a stochastic

distribution (see for some technical details Anselin and Hudak, 1992).

2. A spatial instrumental variable approach. Usually the instruments are formed by

spatially transforming the exogeneous variables (thus X̃ = WX). The main benefit of

this approach is that it is computationally much faster than the maximum likelihood

approach (and it does not requires restrictive distributional assumptions). However,

the exogeneity of the instruments is often doubtful and should therefore be very

carefully adopted. In a seminal series of articles Kelejian and Prucha (1998) and

Kelejian and Prucha (2004) have expanded this technique with a generalized method

of moment estimator and have shown that the estimator is unbiased and efficient

under a reasonably set of mild assumptions. Moreover, their generalised spatial two

stage least squares (GS2SLS) estimator is able to simultaneously estimate a model in

the presence of both a spatial lag and a spatial error.

Fortunately, computer applications and packages for most statistical software is now widely

available. The most often used are listed below:
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●❡♦❉❛ Open source application written by Luc Anselin Anselin (2000). Although somewhat

limited in terms of models it can estimate, this application has a nice integration

with GIS techniques (it can create maps) and is able to deal with larger (> 20,000

geographical observation points) datasets. Figure 6.1, for example, is created with

GeoDa.

❙t❛t❛ There are some user-written packages in Stata that allow for the creation of spatial

weights matrices and the estimation of spatial econometric models. The estimations

in Section 6, e.g., have been produced by Stata. Moreover, Ingmar Prucha gives on

his website 7 Stata code as well for the estimations in Kelejian and Prucha (1998) and

Kelejian and Prucha (2004).

▼❛t▲❛❜ Kelly Pace (Pace, 1997; Pace and Barry, 1997; Pace et al., 1998) maintains a well

good organised webpage8 for spatial statistic routines in Matlab just as Ingmar Prucha

does on his website.

❘ R is now the environment that offer the most in terms of software for spatial econometric

analysis (just as it provides a nice integration with GIS routines). R’s CRAN task view:

Analysis of Spatial Data9 maintained by Roger Bivand (Bivand, 2002) gives a very

thorough overview of all possibilities. It is open source, so free. That is in beers not in

time (mind the learning curve).

❆r❝●✐s ArcGis is obviously mostly used to handle and display spatial data, but can as well,

to a certain extent, perform some spatial econometric exercises uses the spatial analyst

toolbox10. Be careful though for the burden on your wallet and on your computer

memory.

Before we turn to an empirical example of these models, we first look into possibilities to

test a priori whether there is spatial dependence present, and if so, which model specification

is most likely to prevail.

6. SPATIAL ECONOMETRICS IN PRACTICE: THE DETERMINANTS

OF CRIME

We have seen above that OLS is not correct anymore when spatial dependence is present.11

So, for the spatial lag model, conventional regression techniques are not appropriate any-

more and we have to turn to more complex methods, like maximum likelihood or method of

moments. For the spatial error model we might apply instrumental variables (IV) techniques

if we have some kind of consistent estimate of λ. Usually, that is not the case and we have

7❤tt♣✿✴✴❡❝♦♥✇❡❜✳✉♠❞✳❡❞✉✴⑦♣r✉❝❤❛✴❘❡s❡❛r❝❤❴Pr♦❣✳❤t♠.
8❤tt♣✿✴✴✇✇✇✳s♣❛t✐❛❧✲st❛t✐st✐❝s✳❝♦♠✴s♦❢t✇❛r❡❴✐♥❞❡①✳❤t♠.
9❤tt♣s✿✴✴❝r❛♥✳r✲♣r♦❥❡❝t✳♦r❣✴✇❡❜✴✈✐❡✇s✴❙♣❛t✐❛❧✳❤t♠❧.

10❤tt♣✿✴✴✇✇✇✳❡sr✐✳❝♦♠✴s♦❢t✇❛r❡✴❛r❝❣✐s✴❡①t❡♥s✐♦♥s✴s♣❛t✐❛❧❛♥❛❧②st.
11Except for the spatial cross-regressive model, but basically that is a normal regression and we do not look

into this model any further.
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Figure 6.1: Crime rates, in quartiles, in the neighbourhoods of Columbus, Ohio.

to rely again on maximum likelihood or method of moment methods. Fortunately, as we

have seen statistical softare packages are readily available now for the estimation of spatial

dependence. For our application we use Luc Anselin’s Geoda12, which is very useful for

making nice spatial maps as well. Moreover, we use the user-written plug-in for Stata, the

so-called ‘sg162’ package13, which is able to deal with spatial datasets, spatial tests and

statistics and the estimation of spatial dependence in regression frameworks.

A long-lasting and still somewhat unsettled scientific literature concerns the determinants

of crime. Already since the 19th century sociologists discovered that crime rates were

correlated with poverty rates. We will look into this issue using the often used Columbus,

Ohio, crime dataset. First look at Figure 6.1.

Here, the darker the color, the larger the crime rate, with high crime rates downtown and

smaller crime rates uptown. We are interested in the fact whether crime rates are correlated

with poverty and whether there is spatial dependence present in these data. In other words,

do crime rates exibit some kind of spatial pattern and may this even be generated by a

particular spatial process (e.g., by contagion). To answer these questions, we first have to

12See ❤tt♣s✿✴✴✇✇✇✳❣❡♦❞❛✳✉✐✉❝✳❡❞✉✴.
13See package sg162 from ❤tt♣✿✴✴✇✇✇✳st❛t❛✳❝♦♠✴st❜✴st❜✻✵ developed by Maurizio Pisati, University of

Milano Bicocca, Italy.

SYLLABUS SPATIAL ECONOMETRICS 16



SPATIAL ECONOMETRICS IN PRACTICE: THE DETERMINANTS OF CRIME THOMAS DE GRAAFF

collect data.14 The data we have are a first order contigous spatial weight matrix, indicating

for 49 neighbourhoods whether they share a border, the variable ‘crime’ which measures the

residential burglaries and vehicle theft per thousand households in a neighbourhood, the

variable ‘income’ which is the average income in thousand dollars and the variable ‘hoval’

which is the average house value in thousand dollars. All data pertain to 1980.

To start with our analysis, we first run an OLS regression on ‘crime’. Table 6.1 gives the

STATA results.

Table 6.1: OLS estimation results: crime

Variable Coefficient Std. Err.

hoval -0.274† 0.163

income -1.597∗∗ 0.461

Intercept 68.619∗∗ 4.233

N 49

R2 0.552

F (2,46) 45.466

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Clearly, crime is in this specification negatively related with house values and income. For

example, if average income increase with a 1,000 dollars in a neighbourhood, the amount

of crime incidences per thousand household decreases with more than 1.5. But is there

spatial dependence present in this dataset? We therefore first look at the relation between

‘crime’ and the level of ‘crime’ in the neighbours. To to so, we standardize the ‘crime’ variable

and depict this against the spatial lag of ‘crime’ (W× ‘crime’) in a moran scatterplot. This

scatterplot is depicted in Figure 6.2. Obviously, there is a positive relation between those two

variables. Crime is high when crime levels in the neighbourhoods are high and low when

crime levels in the neighbourhoods are low. And of course, the steeper the regression slope,

the more spatial dependence and the higher the global Moran’s I .

Thus, the residuals of the regression most likely show spatial dependence as well. To investi-

gate these residuals, we run our test-statistics by invoking the STATA command ‘spatdiag’:

Table 6.2 displays the test-statistics. First, the Moran’s I clearly shows that some kind of

spatial dependence is present in the residuals. If we now look at the Lagrange multiplier

test, then we see that both tests for spatial error and lag models are significant. However,

we do not know which model to choose. Therefore, we look at the Robust LM tests, which

clearly indicates that the spatial lag model (even when corrected for the presence of an error

model) is to preferred above the spatial error model. Note that the Robust LM test is now

only marginally significant. Running the spatial lag model with STATA, by using the ‘spatreg’

command gives the output as displayed in Table 6.3:

Clearly the spatial dependence parameter, ρ̂, is significant and rather large. Namely, ρ̂ = 0.43

means that 43% of the crime rate in a neighbourhood is related with the weighted average

14these data can be dowloaded as well from ❤tt♣✿✴✴✇✇✇✳st❛t❛✳❝♦♠✴st❜✴st❜✻✵ and are called columbus-

data.dta and columbusswm.dta for the data and spatial weight matrix, respectively.
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Figure 6.2: Moran scatterplot of ‘crime’ in Columbus, Ohio.

Table 6.2: Test statistics for spatial dependence

Test Statistic p-value

Moran’s I 2.955 0.003

Spatial error:

Lagrange multiplier 5.723 0.017

Robust Lagrange multiplier 0.079 0.778

Spatial lag:

Lagrange multiplier 9.364 0.002

Robust Lagrange multiplier 3.720 0.054

Table 6.3: Estimation results : spatial lag

Variable Coefficient Std. Err.

hoval -0.266∗∗ 0.088

income -1.032∗∗ 0.328

Intercept 45.079∗∗ 7.871

Spatial dependence parameter

ρ̂ 0.431∗∗ 0.124

Estimation of standard deviation

σ̂ 9.772∗∗ 0.998

N 49

Log-likelihood -182.39

χ2
(1) 9.974

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%
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crime rate of its neighbours. Further, we see here that spatial lag processes indeed induces

a bias in OLS regressions. To see this, compare the coefficient of income in Table 6.3 and

Table 6.1. The coefficient has dropped with almost a third, indicating that income levels in

a neighbourhood are not as important as previously believed when correcting for spatial

dependence. So, does this mean that crime rates are caused by crime rates in neighborhoods

nearby (copy-catting, contagion or peer effects?). Not necessarily so. It could as well be that

there are unobserved spatial variables (socio-economic class, education, percentage broken

families) that relate to both income and crime rates. So, this result signifies the importance

of correcting for spatial dependence—especially in cross-sections, but points as well to the

fact that one should be careful to interpretate these results directly.

7. CONCLUDING REMARKS

The use of spatial econometrics is now almost common practice—at least in the fields of

regional science and urban economics. With the advent of increasing larger spatial datasets,

there is also a need for spatial dependence correction. Besides, more and more computer

software is available for estimating spatial regression models. Further, spatial dependence—

be it as a spatial lag, spatially correlated exogenous variables or a spatial error model—seems

to be omnipresent in cross-sectional data.

However, we would like to make a caveat here. The presence of spatial dependence

does not necessarily mean that there is some sort of fancy spatial process—such as spillover

processes between firms or network externalities—at work (see for a similar critique Gibbons

and Overman, 2012). Usually, it indicates that the researcher has omitted an important

spatially correlated variable or that the important spatially correlated variable can not be

easily observed, like ambition and intelligence. Unobserved spatial heterogeneity is more

rule than exception. The problem is though that if you are interested in finding a causal

effect, spatial econometrics if not of much help as it does not aid identification of the

underlying causal mechanism. What it can do is tacking spatial unobserved heterogeneity

if one can not use spatial fixed effects as in a cross-section. Moreover, the marginal effects

from a spatial econometric regression are difficult to assess. Therefore, and that is what

Gibbons and Overman (2012) argue, the best way to incorporate spatial variables is via

spatially correlated exogenous variables (the Durbin model). These are easy to interpret and

do not require any additional assumptions. Still note that this not mean that you have found

a causal effect.

That does not render spatial econometrics meaningless. On the contrary, controlling

for spatial dependence might have a large impact in the size of the other coefficients and

removes at least one particular and important source of bias in the data, even though a

direct interpretation is often cumbersome. And if you have a (structural) model15 that neatly

describes the interaction then spatial econometrics give the right tools to empirical validate

such a model.

15One can think here about models describing epidemics, congestion and social interaction effects in networks.

Especially the latter now receives more and more attention in main stream economics and econometrics,

but note that the causality here still needs attention (König et al., 2017).
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A. MATRIX ALGEBRA

Matrix algebra is slightly different than normal algebra (with just numbers), especially in

terms of multiplication and division. At first, it might seem very outlandish if you are not

used to it. Therefore, this small appendix is provided which gives the most important

characteristics of matrices and rules of matrix algebra.

A.1. WHAT IS A MATRIX?

A matrix X can be seen as a rectangular box filled with numbers xi j , where x denotes a

number and i and j are indices that run from 1 to I or J , respectively. Specifically, i stands

for the i -th row of X and j for the j -th column (thus xr ow,column). So, in general we have

X =





















x11 x12 · · · x1 j · · · x1J

x21 x22 · · · x2 j · · · x2J
...

...
. . .

...
. . .

...

xi 1 xi 2 · · · xi j · · · xi J
...

...
. . .

...
. . .

...

xI 1 xI 2 · · · xI j · · · xI J





















. (A.1)

A.2. IDENTITY MATRIX

And identity, I, matrix is a matrix with zeros on the off-diagional and ones on the diagonal,

so:

I =





















1 0 · · · 0 · · · 0

0 1 · · · 0 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 1 · · · 0
...

...
. . .

...
. . .

...

0 0 · · · 0 · · · 1





















. (A.2)

multiplying a matrix or a vector with the identity matrix always gives back the same matrix

of vector, so: Iy = y .

A.3. MATRIX ADDITION AND SUBTRACTION

Matrix addition and subtraction is fortunately rather easy. For matrix addition:

X+Y = Z, (A.3)

where each zi j in matrix Z is calculated by xi j + yi j . Likewise for subtraction. So Matrix

addition and subtraction is element wise, but only goes for matrices of the same size.
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A.4. MATRIX MULTIPLICATION

For matrix multiplication we now use the so-called inner products of vectors (usually de-

noted by a ′). Say, x = [x1 x2 x3] and y = [y1 y2 y3], then x′y = x1 y1 + x2 y2 + x3 y3.

Assume that we have the following matrix multiplication

XY = Z, (A.4)

then the number on the i -th row and j -th column of Z is calculated by the inner product of

the i -th row of X and the j -th column of Y. For example:

XY =
[

1 3

4 4

][

2 4

1 6

]

=
[

1×2+3×1 1×4+3×6

4×2+4×1 4×4+4×6

]

=
[

5 22

12 40

]

= Z (A.5)

A.5. MATRIX DIVISION

Matrix division is the tough, both in concept and calculation (therefore, let a computer do all

the work). Obviously, 1/X is a strange concept. Therefore, the inverse, X−1, is invented and

defined as follows (only for symmetrical matrices with equal number of rows and columns):

X−1X = XX−1 = I (A.6)

So multiplying a matrix with its inverse, and vice versa, gives the identity matrix.
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